Mathematical Modelling of Wastewater Treatment Plants

Part III: Dynamic Modelling of the Activated Sludge Process

Gilles G. Patry University of Ottawa

Outline

- Introduction
- Notation used by the Task Group (applies to all ASM models)
- ASM1 Model Development
 - ASM1 Model Structure
 - Processes
 - Aerobic growth of heterotrophs
 - Anoxic growth of heterotrophs
 - Aerobic growth of autotrophs
 - Decay of heterotrophs
 - Decay of autotrophs
 - Ammonification of soluble organic nitrogen
 - Hydrolysis of entrapped organics
 - Hydrolysis of entrapped organic nitrogen
 - Petersen matrix formulation of ASM1
- Formulating the differential equations

Activated Sludge Modelling Timeline

(adapted from Bruce Johnson, CH2M Hill)

Empirical Design, Piloting & Guesswork

Kinetics-Based Design Whole Plant Simulators

Activated Sludge Model No. 1 (ASM1)

- Introduced in 1987 as IAWQ Model no. 1 (ASM1) -IAWQ Task Group on Activated Sludge Modeling
- ASM1 is a simple model consisting of:
 - 8 processes
 - 13 state variables or components
 - 19 parameters
- Model enhanced several times to address specific shortcomings of ASM1
 - ASM No. 2
 - ASM No. 2d
 - ASM No. 3
 - others

Henze, M., Grady Jr., C.P.L., Gujer, W., Marais, G.v.R., Matsuo, T. (1987). "Activated Sludge Model No.1" *IAWQ Scientific and Technical Report No.1*, IAWQ, London, Great Britain.

Carbonaceous Components

Nitrogenous Components

Processes in ASM1

- Aerobic growth of heterotrophs
- Anoxic growth of heterotrophs
- Aerobic growth of autotrophs
- Decay of heterotrophs
- Decay of autotrophs
- Ammonification of soluble organic nitrogen
- Hydrolysis of entrapped organics
- Hydrolysis of entrapped organic nitrogen

- A fraction of the readily biodegradable substrate is used for growth of heterotrophic biomass and the balance is oxidized for energy.
- Growth model used Monod kinetics
- Ammonia is used as nitrogen source and is incorporated in cell mass
- Both the substrate (S_s) and oxygen (S_o) may be rate limiting for the growth process and removal of COD
- Dissolved oxygen switching function is introduced
- Alkalinity change Readily Heterotrophic S X_{BH} biodegrable biomass substrate ASM1 Aerobic G So Dissolvea Ammonia S_{NH} 8/17/2009 oxygen 9 nitrogen

Aerobic Growth – Heterotrophs

Anoxic Growth of Heterotrophs

 In the absence of oxygen, the heterotrophic organisms are capable of using nitrate as the terminal electron acceptor with S_s as the substrate

- Leads to production of heterotrophic biomass and nitrogen gas (as a result of the reduction of nitrate with associated alkalinity change)
- Growth modeled using same Monod kinetics as aerobic growth except that kinetic rate is multiplied by η_g (< 1)
 - Why $\eta_{\rm g}$ < 1 ?
 - Lower maximum growth rate under anoxic conditions OR
 - Only a fraction of the heterotrophic biomass is able to function with nitrate as electron acceptor
- Ammonia serves as nitrogen source for cell synthesis, which affects alkalinity

Anoxic Growth of Heterotrophs

where $\eta_{\rm g}$ = correction factor for anoxic growth of heterotrophs

 $K_{\rm NO}$ = nitrate half saturation coefficient for denitrifying heterotrophs, g NO₃ - N m⁻³

12

Decay of Heterotrophs

- Organisms die at a certain rate and
 - a portion of the material is considered to be non-biodegradable and adds to the particulate fraction X_P
 - the remainder adds to the pool of slowly biodegradable substrate
- Organic nitrogen in particulate substrate (X_s) becomes available as particulate organic nitrogen
- Process is assumed to take place at same rate under aerobic, anoxic or anaerobic conditions

Decay of Heterotrophs

• Process rate:

Aerobic Growth of Autotrophs

- Ammonia is oxidized to nitrate (single step process) resulting in production of autotrophic biomass and associated oxygen demand
- Ammonia is also used as nitrogen source for synthesis and incorporated in cell mass

- Nitrate nitrite nitrogen
- Process has an effect on alkalinity and total oxygen demand
- Amount of biomass formed is generally small because of the low yield autotrophic nitrifiers
- Growth rate modeled using Monod kinetics

where $\hat{\mu}_{A}$ = autotrophic maximum specific growth rate, d⁻¹ K_{NH} = ammonia half saturation coefficient for autotrophs, g COD m⁻³ K_{OA} = oxygen half saturation coefficient for autotrophs, g O₂ m⁻³ ASM1

Decay of Autotrophs

- Modeled in same way as decay of heterotrophs
- Process rate:

 $b_{\rm A} X_{\rm B.A}$

Hydrolysis of Entrapped Organics

- Slowly biodegradable substrate enmeshed in sludge mass is broken down extracellularly, producing readily biodegradable substrate available to organisms for growth
- Process modeled on basis of surface reaction kinetics

- Process occurs under aerobic and anoxic conditions
- Rate of hydrolysis is reduced under anoxic conditions by a factor $\eta_{\rm h}$ (< 1)
- Rate is first-order wrt heterotrophic biomass and saturates as the amount of entrapped organics becomes large

where $k_{\rm h}$ = maximum specific hydrolysis rate, g slowly biodeg. COD (g cell COD day)⁻¹

 $K_{\rm X}$ = half saturation coefficient for hydrolysis of slowly biodeg. substrate, g slowly biodeg. COD (g cell COD day)⁻¹

 $\eta_{\rm h}$ = correction factor for anoxic hydrolysis

8/17/2009

ASM1

Hydrolysis of Entrapped Organic Nitrogen

 Biodegradable particulate organic nitrogen is broken down into soluble organic nitrogen at a rate defined by the hydrolysis reaction for entrapped organics

• Process rate:

where ρ_7 is given by:

$$k_{\rm h} \left(\frac{\frac{X_{\rm S}}{X_{\rm B,H}}}{K_{\rm X} + \left(\frac{X_{\rm S}}{X_{\rm B,H}}\right)} \right) \left\{ \left(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \right) + \eta_{\rm h} \left(\frac{K_{\rm O,H}}{K_{\rm O,H} + S_{\rm O}} \right) \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \right) \right\} X_{\rm B,H}$$

ASM1

Ammonification of Soluble Organic Nitrogen

- Biodegradable soluble organic nitrogen is converted to free and saline ammonia using first-order process mediated by active heterotrophs
- Hydrogen ions consumed in the process resulting in an alkalinity change

Ammonification of Soluble Organic Nitrogen

• Process rate:

 $k_{\rm a}S_{\rm ND}X_{\rm B,H}$

where $k_a = \text{ammonification rate, m}^3 (\text{g COD day})^{-1}$

Soluble biodegrable organic nitrogen

ASM1 State Variables

Si	Soluble inert organics	g COD/m3					
Ss	Readily biodegradable (soluble) substrate	g COD/m3					
Xi	Particulate inert organics	g COD/m3					
Xs	Slowly biodegradable (particulate) substrate	g COD/m3					
Xbh	Active heterotrophic biomass	g COD/m3					
Xba	Active autotrophic biomass	g COD/m3					
Хр	Unbiodegrad. particulates from cell decay	g COD/m3					
So	Dissolved oxygen	g O2/m3					
Sno	Nitrate and nitrite	g N/m3					
Snh	Free and ionized ammonia	g N/m3					
Snd	Soluble biodegradable organic nitrogen (in ss)	g N/m3					
Xnd	Particulate biodegradable organic N (in xs)	gN/m3					
Xii Inert inorganic suspended solids g/m3							

S - Soluble Components X - Particulate Components

Adapted from Hydromantis, Inc.

	Component - i	1	2	3	4	5	6	7	8	9	10	11	12	13	Process Rate, pr [ML-3T-1]
j	Process	SI	Ss	XI	Xs	Хв,н	$X_{B,A}$	Хp	So	SNO	SNH	S_{ND}	XND	SALK	
1	Aerobic growth of heterotrophs		$\frac{1}{Y_{H}}$			1			$\frac{1-Y_{\rm H}}{Y_{\rm H}}$		$-i_{XB}$			$\frac{i_{XB}}{14}$	$\hat{\mu}_{\rm H} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}} \right) \left(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \right) X_{\rm B,H}$
2	Anoxic growth of heterotrophs		$\frac{1}{Y_{\rm H}}$			1				$\frac{1-Y_{\rm H}}{2.86Y_{\rm F}}$	-ixB			$\frac{1-Y_{\rm H}}{14\cdot 2.86Y_{\rm H}} \\ -\frac{i_{\rm XB}}{14}$	$ \hat{\mu}_{\rm H} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}} \right) \left(\frac{K_{\rm O,H}}{K_{\rm O,H} + S_{\rm O}} \right) \\ \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \right) \eta_{\rm g} X_{\rm B,H} $
3	Aerobic growth of autotrophs						1		$-\frac{4.57}{Y_A}+1$	$\frac{1}{Y_A}$	$-i_{XB} - \frac{1}{Y_A}$			$-\frac{i_{\rm XB}}{14}-\frac{1}{7Y_{\rm A}}$	$\hat{\mu}_{A} \left(\frac{S_{\rm NH}}{K_{\rm NH} + S_{\rm NH}} \right) \left(\frac{S_{\rm O}}{K_{\rm O,A} + S_{\rm O}} \right) X_{\rm B,A}$
4	'Decay' of heterotrophs				1- <i>f</i> p	-1		fp					i _{XB} -fpi _{XP}		b _H X _{B,H}
5	'Decay' of autotrophs				1– <i>f</i> p		-1	f₽					ix B —fpixp		b _A X _{B,A}
6	Ammonification of soluble organic nitrogen										1	-1		$\frac{1}{14}$	kaSNDXB,H
7	'Hydrolysis' of entrapped organics		1		-1										$ \begin{aligned} & k_{\rm h} \frac{X_{\rm S}/X_{\rm B,H}}{K_{\rm X} + (X_{\rm S}/X_{\rm B,H})} \Biggl[\Biggl(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \Biggr) \\ & + \eta_{\rm h} \Biggl(\frac{K_{\rm O,H}}{K_{\rm O,H} + S_{\rm O}} \Biggr) \Biggl(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \Biggr) \Biggr] X_{\rm B,H} \end{aligned} $
8	'Hydrolysis' of entrapped organic nitrogen											1	-1		$\rho_7(X_{\rm ND}/X_{\rm S})$
Observed Conversion Rates [ML-3T-1]		$r_i = \sum_j v_{ij} \rho_j$									$r_i = \sum_j v_{ij} \rho_j$				
2 1 1 1 1	Stoichiometric Parameters: Heterotrophic yield: Y _H Autotrophic yield: Y _A Fraction of biomass yielding particulate products: fp Mass N/Mass COD in biomass: i _{XB} Mass N/Mass COD in products from Biomass: i _{XP}		Readily biodegradable substrate [M(COD)L-3]	Particulate inert organic matter [M(COD)L-3]	Slowly biodegradable substrate [M(COD)L-3]	Active heterotrophic biomass [M(COD)L-3]	Active autotrophic biomass [M(COD)L-3]	Particulate products arising from biomass decay [M(COD)L-3]	Oxygen (negative COD) [M(-COD)L-3]	Nitrate and nitrite nitrogen [M(N)L-3]	NH4+NH3 nitrogen [M(N)L-3]	Soluble biodegradable organic nitrogen [M(N)L-3]	Particulate biodegradable organic nitrogen [M(N)L-3]	Alkalinity – Molar units	Kinetic Parameters: Heterotrophic growth and decay: $\hat{\mu}_{H}$, K_{S} , K_{OH} , K_{NO} , b_{H} Autotrophic growth and decay: $\hat{\mu}_{R}$, K_{NH} , K_{OA} , b_{A} Correction factor for anoxic growth of heterotrophs: η_{g} Ammonification: k_{a} Hydrolysis: k_{h} , K_{X} Correction factor for anoxic hydrolysis: η_{h} 27

Model

- For a completely mixed reactor ASM1 results in 13 nonlinear ordinary differential equations (NODE)
- Given a set of initial conditions, solve these using numerical methods techniques, i.e.,
 - General solvers such as Matlab, Simulink, ACSL, etc.
 - Specialized simulators such as GPS-X, BioWin, etc. as we will see later.
- A plug flow reactor consisting for example of 10 CSTR would result in 130 NODEs – if you have 8 such reactors in parallel, this translates to more than 1000 NODEs.

ASM1, ASM2, ASM2d, ASM3, etc.

Table 6-2 Model processes in GPS-X										
	Models									
Process	asm1	asm3	mantis (and 3dmantis)	twostepmantis	asm2d	newgeneral				
Fermentation Step					Х	Х				
Nitrification/Denitrification	Х	Х	Х	Х	Х	Х				
Aerobic Denitrification			Х	Х						
Aerobic Substrate Storage		X								
COD "Loss"						Х				
2-Step Nitrification				Х						
NO3 as a N source for cell synthesis			X	Х		Х				
Alkalinity consumption/generation	X	X	X	Х	Х					
Alkalinity (as a limiting factor for growth processes)					Х					
Biological phosphorus removal					Х	Х				
Precipitation of P with metal hydroxides					Х					
Temperature dependency	X*	Χ	Χ	Х	Х	Х				

* not part of the published model, but added in GPS-X.

