Mathematical Modelling of Wastewater Treatment Plants

Part III: Dynamic Modelling of the Activated Sludge Process

Gilles G. Patry University of Ottawa

Outline

- **Introduction**
- Notation used by the Task Group (applies to all ASM models)
- ASM1 Model Development
	- ASM1 Model Structure
	- Processes
		- Aerobic growth of heterotrophs
		- Anoxic growth of heterotrophs
		- Aerobic growth of autotrophs
		- Decay of heterotrophs
		- Decay of autotrophs
		- Ammonification of soluble organic nitrogen
		- Hydrolysis of entrapped organics
		- Hydrolysis of entrapped organic nitrogen
	- Petersen matrix formulation of ASM1
- Formulating the differential equations

Activated Sludge Modelling Timeline

(adapted from Bruce Johnson, CH2M Hill)

Empirical Design, Piloting & Guesswork

Kinetics-Based Design Whole Plant **Simulators**

Activated Sludge Model No. 1 (ASM1)

- Introduced in 1987 as IAWQ Model no. 1 (ASM1) IAWQ Task Group on Activated Sludge Modeling
- ASM1 is a simple model consisting of:
	- 8 processes
	- 13 state variables or components
	- 19 parameters
- Model enhanced several times to address specific shortcomings of ASM1
	- $-$ ASM No. 2
	- ASM No. 2d
	- $-$ ASM No. 3
	- others

Henze, M., Grady Jr., C.P.L., Gujer, W., Marais, G.v.R., Matsuo, T. (1987). "Activated Sludge Model No.1*" IAWQ Scientific and Technical Report No.1,* IAWQ, London, Great Britain.

Carbonaceous Components

Nitrogenous Components

Processes in ASM1

- Aerobic growth of heterotrophs
- Anoxic growth of heterotrophs
- Aerobic growth of autotrophs
- Decay of heterotrophs
- Decay of autotrophs
- Ammonification of soluble organic nitrogen
- Hydrolysis of entrapped organics
- Hydrolysis of entrapped organic nitrogen

- A fraction of the readily biodegradable substrate is used for growth of heterotrophic biomass and the balance is oxidized for energy.
- Growth model used Monod kinetics
- Ammonia is used as nitrogen source and is incorporated in cell mass
- Both the substrate (S_S) and oxygen (S_O) may be rate limiting for the growth process and removal of COD
- Dissolved oxygen switching function is introduced
- Alkalinity change

Aerobic Growth – Heterotrophs

Anoxic Growth of Heterotrophs

• In the absence of oxygen, the heterotrophic organisms are capable of using nitrate as the terminal electron acceptor with S_S as the substrate

- Leads to production of heterotrophic biomass and nitrogen gas (as a result of the reduction of nitrate with associated alkalinity change)
- Growth modeled using same Monod kinetics as aerobic growth except that kinetic rate is multiplied by $\eta_{\rm g}$ (< 1) – Why $\eta_{\rm g}$ < 1 ?
	- - Lower maximum growth rate under anoxic conditions OR
		- Only a fraction of the heterotrophic biomass is able to function with nitrate as electron acceptor
- Ammonia serves as nitrogen source for cell synthesis, which affects alkalinity

Anoxic Growth of Heterotrophs

where η_{g} = correction factor for anoxic growth of heterotrophs

 K_{NO} = nitrate half saturation coefficient for denitrifying heterotrophs, g NO₃ - N m⁻³

Decay of Heterotrophs

- Organisms die at a certain rate and
	- a portion of the material is considered to be non-biodegradable and adds to the particulate fraction X_p
	- the remainder adds to the pool of slowly biodegradable substrate
- Organic nitrogen in particulate substrate (X_s) becomes available as particulate organic nitrogen
- Process is assumed to take place at same rate under aerobic, anoxic or anaerobic conditions

Decay of Heterotrophs

• Process rate:

Aerobic Growth of Autotrophs

- Ammonia is oxidized to nitrate (single step process) resulting in production of autotrophic biomass and associated oxygen demand
- Ammonia is also used as nitrogen source for synthesis and incorporated in cell mass

- Process has an effect on alkalinity and total oxygen demand
- Amount of biomass formed is generally small because of the low yield autotrophic nitrifiers
- Growth rate modeled using Monod kinetics

nitrogen

-3 K_{OA} = oxygen half saturation coefficient for autotrophs, $\underline{g} O_2$ m -3 K_{NH} = ammonia half saturation coefficient for autotrophs, g COD m -1 where $\hat{\mu}_A$ = autotrophic maximum specific growth rate, d [ASM1](#page-28-0)

- Modeled in same way as decay of heterotrophs
-

• Process rate: $b_A X_{BA}$

[ASM1](#page-28-0)

Hydrolysis of Entrapped Organics

- Slowly biodegradable substrate enmeshed in sludge mass is broken down extracellularly, producing readily biodegradable substrate available to organisms for growth
- Process modeled on basis of surface reaction kinetics

- Process occurs under aerobic and anoxic conditions
- Rate of hydrolysis is reduced under anoxic conditions by a factor *η*^h (< 1)
- Rate is first-order wrt heterotrophic biomass and saturates as the amount of entrapped organics becomes large

where k_h = maximum specific hydrolysis rate, g slowly biodeg. COD (g cell COD day)⁻¹

 $K_{\rm x}$ = half saturation coefficient for hydrolysis of slowly biodeg. substrate, g slowly biodeg. COD (g cell COD day)⁻¹

 η_{h} = correction factor for anoxic hydrolysis

8/17/2009 19

Hydrolysis of Entrapped Organic Nitrogen

• Biodegradable particulate organic nitrogen is broken down into soluble organic nitrogen at a rate defined by the hydrolysis reaction for entrapped organics

• Process rate:

organic nitrogen *biodegrable organic nitrogen*

where ρ_7 is given by:

$$
k_{\rm h} \left(\frac{X_{\rm S}}{X_{\rm B, H}}\right) \left(\left(\frac{S_{\rm O}}{K_{\rm O, H} + S_{\rm O}} \right) + \eta_{\rm h} \left(\frac{K_{\rm O, H}}{K_{\rm O, H} + S_{\rm O}} \right) \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \right) \right) X_{\rm B, H}
$$

 $8/17/2009$ [ASM1](#page-28-0) 21

Ammonification of Soluble Organic Nitrogen

• Biodegradable soluble organic nitrogen is converted to free and saline ammonia using first-order process mediated by active heterotrophs

> *biodegrable organic nitrogen*

• Hydrogen ions consumed in the process resulting in an alkalinity change

Ammonification of Soluble Organic Nitrogen

• Process rate:

 $k_a S_{ND} X_{B,H}$

where k_a = ammonification rate, m³ (g COD day)⁻¹

Soluble biodegrable organic nitrogen

ASM1 State Variables

S - Soluble Components X - Particulate Components

Adapted from Hydromantis, Inc.

Model

- For a completely mixed reactor ASM1 results in 13 nonlinear ordinary differential equations (NODE)
- Given a set of initial conditions, solve these using numerical methods techniques, i.e.,
	- General solvers such as Matlab, Simulink, ACSL, etc.
	- Specialized simulators such as GPS-X, BioWin, etc. as we will see later.
- A plug flow reactor consisting for example of 10 CSTR would result in 130 NODEs – if you have 8 such reactors in parallel, this translates to more than 1000 NODEs.

ASM1, ASM2, ASM2d, ASM3, etc.

* not part of the published model, but added in GPS-X.

