Mathematical Modelling of Wastewater Treatment Plants

Part II: The Modelling Process

Gilles G. Patry University of Ottawa

Outline

- Types of models
- Modeling strategy
- System identification (parameter identification)
- Example of a simple two-sate variable dynamic system

References:

Olsson, G. and Newell, B. (1999). Wastewater Treatment Systems. IWA Publishing, 742 p. Jeppsson, U. (1996). Modelling Aspects of Wastewater Treatment Processes. Ph.D. Thesis, Lund University, 428 p.

Types of models

- Lab/bench scale models
- Physical models
- Mathematical models
- Qualitative models
- Linguistic models
- Visual models

Mathematical models

- A mathematical model is a representation (simplification) of reality, designed to help us understand the processes that are taking place in the plant
- To represent the same process, models can be very simple or they can be extremely complex
- From an engineering perspective, models should be "as simple as possible, but no simpler"
- Need to be concerned with model « identifiability »

Mathematical models

- The objective is to conceptualize our knowledge of a process or a physical system in a mathematical description of the process
- Once we have a working model we can use it for:
 - Design
 - Operation
 - Research
 - Performance assessment / plant audit
 - Training of operators
 - Forecast and planning purposes
- Modelling of the activated sludge process is not new ...

Activated Sludge Modeling Timeline

(adapted from Bruce Johnson, CH2M Hill, 2009)

Empirical Design, Piloting & Guesswork

Kinetics-Based Design Whole Plant Simulators

Modelling Strategy

- 1. Functional process specification
- 2. Define your modelling objectives
 - a. Purpose
 - b. Accuracy
 - c. Boundary conditions
 - d. Time-scale
 - e. Etc.
- 3. Model type (L vs NL, D vs Continuous, etc.)
- 4. Model development
- 5. Model verification
- 6. Model calibration / validation
- 7. Use the model for its intended purpose

Modelling Objectives

1. Define the purpose of the model (what will it be used for?)

- Design
- Research
- Process control and operation
- Forecasting
- Performance analysis / audit
- Education / learning / training
- Etc.
- A design-based model will be very different than a model developed for research purposes (e.g., CAPDETWorks vs GPS-X)
- Hierarchical modeling (a hierarchy of models)
- 2. Define System Boundaries
 - A component of a reactor
 - The reactor itself
 - Liquid line
 - Entire plant (liquid and sludge line processes)

Modelling Objectives

- 3. Define time scale of interest
 - Dynamics of processes will vary from

seconds & minutes (e.g., dissolved oxygen dynamics)
 to
 days and/or weeks (biomass growth)

Depending on your modeling objectives, model formulation and solution will be dependent on the time scale of interest

4. Define the desired accuracy

Model Type

- Mechanistic vs Black-Box (I/O or ARMAX)
- Deterministic vs stochastic
- Continuous vs discrete
- Distributed vs lumped
- Time domain vs frequency domain

Mechanistic, deterministic, time-domain, continuous distributed models

Adapted from Jeppsson (1996)

System Identification

- Are the model parameters identifiable?
 - Are they uniquely identifiable ? i.e., is there a unique solution?
 - Are they locally identifiable ? i.e., finite number of solutions, i.e., parameter values
 - Are they unidentifiable ? i.e.,

A Simple Example – Two-State Variable System

Substrate S; Biomass X

Consider: $\frac{dX}{dt} = \mu(S)X - bX \quad (1)$ $\frac{dS}{dt} = -\frac{1}{Y}\mu(S)X \quad (2)$ $\mu(S) = \frac{\mu S}{K_S + S} \quad (3)$

Assume X and S are measureable.

Can all 4 parameters K_s, µ̂, Y, b
be uniquely determined from perfect data? In other words, is the system globally identifiable?

Let
$$X_0 = X(0); S_0 = S(0)$$

$$X'(0) = \frac{\hat{\mu}S_0}{K_s + S_0} X_0 - bX_0 = X_1 \qquad (4)$$

$$S'(0) = -\frac{1}{Y} \frac{\hat{\mu}S_0}{K_s + S_0} X_0 = S_1 \qquad (5)$$

$$\mu = \frac{\hat{\mu}S_0}{K_s + S_0}$$

$$X_1 = (\mu - b)X_0$$
$$S_1 = -\frac{\mu}{Y}X_0$$

Take the first-order Taylor series expansion of Eq. (1) and (2) at time t=0

$$X''(0) = (\mu - b)X_1 + \frac{\mu K_S X_0 S_1}{(K_S + S_0)S_0} = X_2$$
(6)
$$S''(0) = -\frac{\mu}{Y} \left(X_1 + \frac{\mu K_S X_0 S_1}{(K_S + S_0)S_0} \right) = S_2$$
(7)

Solve (4), (5), (6) and (7) for K_s , $\hat{\mu}$, Y, b

Solve for parameters

$$K_{S} = \frac{S_{2}S_{0}^{2}X_{0} - S_{1}S_{0}^{2}X_{1}}{S_{1}^{2}X_{0} - S_{2}S_{0}X_{0} + S_{1}S_{0}X_{1}}$$

$$\mu = \frac{X_2 X_0 S_1 - X_1^2 S_1}{S_2 X_0^2 - S_1 X_1 X_0}$$

$$\hat{\mu} = \frac{\left(X_2 X_0 S_1 - X_1^2 S_1\right) \left(K_s + S_0\right)}{S_2 S_0 X_0^2 - S_1 S_0 X_1 X_0}$$

$$b = \frac{S_1 X_2 - S_2 X_1}{S_2 X_0 - S_1 X_1}$$

$$Y = \frac{X_1^2 - X_1 X_0}{S_2 X_0 - S_1 X_1}$$

Accordingly, the process parameters are identifiable.

If measurements are noise-corrupted Then parameters are not uniquely Identifiable!

Modelling of a Single Substrate System

 $Q_{in} = Q_{out} = Q \rightarrow$ Constant Volume Reactor Input – Output = Accumulation - Reaction

• Biomass (X_H):

$$QX_{\rm H,in} - QX_{\rm H,out} = \frac{d(VX_{\rm H})}{dt} - r_{\rm H}V$$
$$r_{X_{\rm H}} = \hat{\mu} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}}\right) X_{\rm H}$$
$$X_{\rm H,in} = 0$$
$$CSTR \rightarrow X_{\rm H,out} = X_{\rm H}$$

$$\frac{dX_{\rm H}}{dt} = \left(\hat{\mu} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}}\right) X_{\rm H} - \frac{X_{\rm H}}{\theta}\right)$$

• Substrate (S_S):

$$QS_{\rm S,in} - QS_{\rm S,out} = \frac{d(VS_{\rm S})}{dt} - r_{\rm S}V$$

$$\frac{dS_{\rm S}}{dt} = \frac{1}{\theta} \left(\left(S_{\rm S,in} - S_{\rm S} \right) - \frac{1}{Y_{\rm H}} \hat{\mu} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}} \right) X_{\rm H} \right)$$

$$r_{S_{\rm S}} = -\frac{1}{Y_{\rm H}} \hat{\mu} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}} \right) X_{\rm H}$$

CSTR $\rightarrow S_{\rm S,out} = S_{\rm S}$

Solve these two NODE using numerical methods techniques. Matlab, Simulink, ACSL, etc.

Two-State / One Process Model in Petersen Matrix Format

<u></u>															<u> </u>
	Component 🗕 i	1	2	3	4	5	6	7	8	9	10	11	12	13	Process Rate. <i>p</i> [ML- ³ T- ¹]
j	Process	SI	Ss	XI	Xs	Хв,н	$X_{B,A}$	Хp	So	SNO	SNH	S_{ND}	XND	SALK	
1	Aerobic growth of heterotrophs		$\frac{1}{Y_{H}}$			1			$\frac{1-Y_{\rm H}}{Y_{\rm H}}$		$-i_{XB}$			$-\frac{i_{XB}}{14}$	$\hat{\mu}_{\rm H} \left(\frac{S_{\rm S}}{K_{\rm S} + S_{\rm S}} \right) \left(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \right) X_{\rm B,H}$
2	Anoxic growth of heterotrophs		$\frac{1}{Y_{\rm H}}$			1				$\frac{1-Y_{\rm H}}{2.86Y_{\rm F}}$	-ixB			$\frac{1-Y_{\rm H}}{14\cdot 2.86Y_{\rm H}} - \frac{i_{\rm XB}}{14}$	$ \hat{\mu}_{\mathrm{H}} \left(\frac{S_{\mathrm{S}}}{K_{\mathrm{S}} + S_{\mathrm{S}}} \right) \left(\frac{K_{\mathrm{O},\mathrm{H}}}{K_{\mathrm{O},\mathrm{H}} + S_{\mathrm{O}}} \right) \\ \left(\frac{S_{\mathrm{NO}}}{K_{\mathrm{NO}} + S_{\mathrm{NO}}} \right) \eta_{\mathrm{g}} X_{\mathrm{B},\mathrm{H}} $
3	Aerobic growth of autotrophs						1		$-\frac{4.57}{Y_A}+1$	$\frac{1}{Y_A}$	$-i_{XB} - \frac{1}{Y_A}$			$-\frac{i_{\rm XB}}{14}-\frac{1}{7Y_{\rm A}}$	$\hat{\mu}_{A} \left(\frac{S_{\rm NH}}{K_{\rm NH} + S_{\rm NH}} \right) \left(\frac{S_{\rm O}}{K_{\rm O,A} + S_{\rm O}} \right) X_{\rm B,A}$
4	'Decay' of heterotrophs				1- <i>f</i> p	-1		fp					i _{XB} −fpi _{XP}		b _H X _{B,H}
5	'Decay' of autotrophs				1– <i>f</i> p		-1	f₽					ix B− fpixp		b _A X _{B,A}
6	Ammonification of soluble organic nitrogen										1	-1		$\frac{1}{14}$	kaSNDXB,H
7	'Hydrolysis' of entrapped organics		1		-1										$ \begin{aligned} & k_{\rm h} \frac{X_{\rm S}/X_{\rm B,H}}{K_{\rm X} + (X_{\rm S}/X_{\rm B,H})} \left[\left(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \right) \right. \\ & + \eta_{\rm h} \left(\frac{K_{\rm O,H}}{K_{\rm O,H} + S_{\rm O}} \right) \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \right) \right] X_{\rm B,H} \end{aligned} $
8	'Hydrolysis' of entrapped organic nitrogen											1	-1		ρ7(XND/XS)
0	Observed Conversion Rates [ML-3T-1]	$r_i = \sum_j v_{ij} \rho_j$									$r_i = \sum_j v_{ij} \rho_j$				
1 1 1 1 1 1	Stoichiometric Parameters: Heterotrophic yield: I _H Autotrophic yield: I _A Fraction of biomass yielding particulate products: fp Mass N/Mass COD in biomass: i _{XB} Mass N/Mass COD in products from biomass: i _{XP}	Soluble inert organic matter [M(COD)L-3]	Readily biodegradable substrate [M(COD)L-3]	Particulate inert organic matter [M(COD)L-3]	Slowly biodegradable substrate [M(COD)L-3]	Active heterotrophic biomass [M(COD)L-3]	Active autotrophic biomass [M(COD)L-3]	Particulate products arising from biomass decay [M(COD)L-3]	Oxygen (negative COD) [M(-COD)L ⁻³]	Nitrate and nitrite nitrogen [M(N)L-3]	NH4+NH3 nitrogen [M(N)L-3]	Soluble biodegradable organic nitrogen [M(N)L-3]	Particulate biodegradable organic nitrogen [M(N)L-3]	Alkalinity – Molar units	Kinetic Parameters: Heterotrophic growth and decay: $\hat{\mu}_{\rm H}$, $K_{\rm S}$, $K_{\rm O,H}$, $K_{\rm NO, b_{\rm H}}$ Autotrophic growth and decay: $\hat{\mu}_{R}$, $K_{\rm NH}$, $K_{\rm O,A}$, $b_{\rm A}$ Correction factor for anoxic growth of heterotrophs: $\eta_{\rm g}$ Ammonification: $k_{\rm a}$ Hydrolysis: $k_{\rm h}$, $K_{\rm X}$ Correction factor for anoxic hydrolysis: $\eta_{\rm h}$ 20

Part III

Dynamic Modelling of the Activated Sludge Process (ASM1)